掌握高中数学这19条“秒杀公式”,高考数学轻松130+!
来源:网络 作者:
数学公式是高考中最重要的,也是想考高分必须记住的。那么数学如此多的公式和推导公式该如何记忆呢?今天方法君整理了高考数学19条秒杀公式供同学们快速解题参考。
1.函数的周期性问题:
①若f(x)=-f(x+k),则T=2k;
②若f(x)=m/(x+k)(m不为0),则T=2k;若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:
a.周期函数,周期必无限
b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数。
③关于对称问题
若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;
函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;
若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。
2.函数奇偶性。
①对于属于R上的奇函数有f(0)=0;
②对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项
3.函数单调性:若函数在区间D上单调,则函数值随着自变量的增大(减小)而增大(减小)。
4.函数对称性:
①若f(x)满足f(a+x)+f(b-x)=c则函数关于(a+b/2,c/2)成中心对称。
②若f(x)满足f(a+x)=f(b-x)则函数关于直线x=a+b/2成轴对称。
5.函数y=(sinx)/x是偶函数。在(0,π)上单调递减,(-π,0)上单调递增。利用上述性质可以比较大小。
6.函数y=(lnx)/x在(0,e)上单调递增,在(e,+∞)上单调递减。另外y=x2(1/x)与该函数的单调性一致。
7.复合函数。
(1)复合函数奇偶性:内偶则偶,内奇同外。
(2)复合函数单调性:同增异减。
8.数列定律。
等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差。
9.隔项相消。对于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]
注:隔项相加保留四项,即首两项,尾两项。
10.面积公式:S=1/2∣mq-np∣其中向量AB=(m,n),向量BC=(p,q)注:这个公式可以解决已知三角形三点坐标求面积的问题!
11.空间立体几何中:以下命题均错。
①空间中不同三点确定一个平面;
②垂直同一直线的两直线平行;
③两组对边分别相等的四边形是平行四边形;
④如果一条直线与平面内无数条直线垂直,则直线垂直平面;
⑤有两个面互相平行,其余各面都是平行四边形的几何体是棱柱;
⑥有一个面是多边形,其余各面都是三角形的几何体都是棱锥。
12.所有棱长均相等的棱锥可以是三、四、五棱锥。
13.求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n为正整数)的最小值。答案为:当n为奇数,最小值为(n2-1)/4,在x=(n+1)/2时取到;当n为偶数时,最小值为n2/4,在x=n/2或n/2+1时取到。
14.椭圆中焦点三角形面积公式:S=b2tan(A/2)在双曲线中:S=b2/tan(A/2)说明:适用于焦点在x轴,且标准的圆锥曲线。A为两焦半径夹角。
15.[转化思想]切线长l=√(d2-r2)d表示圆外一点到圆心得距离,r为圆半径,而d最小为圆心到直线的距离。
16.对于y2=2px,过焦点的互相垂直的两弦AB、CD,它们的和最小为8p。
17.易错点:若f(x+a)[a任意]为奇函数,那么得到的结论是f(x+a)=-f(-x+a)〔等式右边不是-f(-x-a)〕,同理如果f(x+a)为偶函数,可得f(x+a)=f(-x+a)牢记!
18.三角形垂心定理.
①向量OH=向量OA+向量OB+向量OC(O为三角形外心,H为垂心
②若三角形的三个顶点都在函数y=1/x的图象上,则它的垂心也在这个函数图象上。
19.与三角形有关的定理:
①在非Rt△中,有tanA+tanB+tanC=tanAtanBtanC
②任意三角形射影定理(又称第一余弦定理):在△ABC中a=bcosC+ccosB;b=ccosA+acosC;c=acosB+bcosA
③任意三角形内切圆半径r=2S/a+b+c(S为面积)
1.函数的周期性问题:
①若f(x)=-f(x+k),则T=2k;
②若f(x)=m/(x+k)(m不为0),则T=2k;若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:
a.周期函数,周期必无限
b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数。
③关于对称问题
若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;
函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;
若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。
2.函数奇偶性。
①对于属于R上的奇函数有f(0)=0;
②对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项
3.函数单调性:若函数在区间D上单调,则函数值随着自变量的增大(减小)而增大(减小)。
4.函数对称性:
①若f(x)满足f(a+x)+f(b-x)=c则函数关于(a+b/2,c/2)成中心对称。
②若f(x)满足f(a+x)=f(b-x)则函数关于直线x=a+b/2成轴对称。
5.函数y=(sinx)/x是偶函数。在(0,π)上单调递减,(-π,0)上单调递增。利用上述性质可以比较大小。
6.函数y=(lnx)/x在(0,e)上单调递增,在(e,+∞)上单调递减。另外y=x2(1/x)与该函数的单调性一致。
7.复合函数。
(1)复合函数奇偶性:内偶则偶,内奇同外。
(2)复合函数单调性:同增异减。
8.数列定律。
等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差。
9.隔项相消。对于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]
注:隔项相加保留四项,即首两项,尾两项。
10.面积公式:S=1/2∣mq-np∣其中向量AB=(m,n),向量BC=(p,q)注:这个公式可以解决已知三角形三点坐标求面积的问题!
11.空间立体几何中:以下命题均错。
①空间中不同三点确定一个平面;
②垂直同一直线的两直线平行;
③两组对边分别相等的四边形是平行四边形;
④如果一条直线与平面内无数条直线垂直,则直线垂直平面;
⑤有两个面互相平行,其余各面都是平行四边形的几何体是棱柱;
⑥有一个面是多边形,其余各面都是三角形的几何体都是棱锥。
12.所有棱长均相等的棱锥可以是三、四、五棱锥。
13.求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n为正整数)的最小值。答案为:当n为奇数,最小值为(n2-1)/4,在x=(n+1)/2时取到;当n为偶数时,最小值为n2/4,在x=n/2或n/2+1时取到。
14.椭圆中焦点三角形面积公式:S=b2tan(A/2)在双曲线中:S=b2/tan(A/2)说明:适用于焦点在x轴,且标准的圆锥曲线。A为两焦半径夹角。
15.[转化思想]切线长l=√(d2-r2)d表示圆外一点到圆心得距离,r为圆半径,而d最小为圆心到直线的距离。
16.对于y2=2px,过焦点的互相垂直的两弦AB、CD,它们的和最小为8p。
17.易错点:若f(x+a)[a任意]为奇函数,那么得到的结论是f(x+a)=-f(-x+a)〔等式右边不是-f(-x-a)〕,同理如果f(x+a)为偶函数,可得f(x+a)=f(-x+a)牢记!
18.三角形垂心定理.
①向量OH=向量OA+向量OB+向量OC(O为三角形外心,H为垂心
②若三角形的三个顶点都在函数y=1/x的图象上,则它的垂心也在这个函数图象上。
19.与三角形有关的定理:
①在非Rt△中,有tanA+tanB+tanC=tanAtanBtanC
②任意三角形射影定理(又称第一余弦定理):在△ABC中a=bcosC+ccosB;b=ccosA+acosC;c=acosB+bcosA
③任意三角形内切圆半径r=2S/a+b+c(S为面积)